### **Section IV: Nonrecoverable SEU Effects**

Leif Z. Scheick
Electronic Parts Engineering Office
Section 514

#### Non-Recoverable SEE

Events which interrupt device function and do not recover without external interaction

These events may permanently damage the device

Three main types

- Latchup (SEL)
- Hard errors (SHE)
- Rupture/Burnout (SEGR/SEB)

## Latchup Is a Common Problem for CMOS Technology

Latchup paths are inherent in most CMOS circuits because of the fabrication technology

The commercial Modem on Pathfinder's Rover was susceptible to latchup

- Laboratory tests showed that the latchup was not destructive
  - This allowed the device to remain latched for periods of several minutes
  - A simple power cycle counter measure was used in the application
- The latchup probability was low for this application
  - Short mission life (nominally two weeks)
  - Risk deemed acceptable by mission planners

## **SEL Latchup Path**



### **SEL I-V Characteristics**



p
n
p

#### **SEL Facts**

Triggered by heavy ions, protons, neutrons May be catastrophic

Only recovered by power cycle

SEL is strongly temperature dependent

- Threshold for latchup decreases at high temperature
- Cross section increases as well

Modern devices may have many different latchup paths

- Both high current and low current SELs can occur
- Characterization of latchup is a difficult problem for complex circuits

## **SEL LET Dependence**



## SEL Ion Range Dependence



## SEL Example: Induced by Protons in K-5



# SEL occurred at 0.4 MeV cm<sup>2</sup>/mg

- Due to nuclear recoils
- Cross section of 6.7x10<sup>-8</sup> cm<sup>2</sup>

Many of the latchup events were destructive

## **SEL Heating**





## SEL Heating\*





## **SEL Heating**



## **SEL Temperature Dependence**



## **SEL Temperature Dependence\***



#### **SEL Counter Measures**

#### **SEL Detection and Mitigation**

- Current limiting devices can't stop latchups or low current latchups
- Detection circuits can't stop all latchups
   Some devices have latchup modes which are always destructive
- Mitigation may not be fast enough
- Thorough testing required to ensure that all latchup events are detected

### **SEL Technology Options**

#### Device type

- Bulk CMOS latches worst
  - COTS
- CMOS deposited on epitaxial layer may improve SEL immunity
  - Some COTS More Expensive
  - Not always effective (e.g., K-5 processor)
- SOI and isolated oxides are mostly immune
  - Very expensive
  - Limited availability

## Single Hard Errors

Large rare energy depositions can cause individual cells to be unable to change state

- Referred to as a "stuck bit" in memory
   This is a microdose effect
- Microlatchups can cause a fraction of bits to be unable to change state
   Power cycling is required

#### **Destructive SEEs**

#### Gate Rupture (permanent failure of oxide)

- Power devices are most susceptible
- Programmable devices also susceptible
- Very thin oxides in VLSI devices

#### **Burnout**

- Caused by excessive localized current within the structure
- Power transistors
- Some types of linear integrated circuits

### **Destructive SEEs**



**Single Event Gate Rupture Power MOSFET** 

#### **SEB Facts**

Triggered by heavy ions, and possibly by protons and neutrons

Always destructive

CMOS, power BJTs and MOSFETs are susceptible

#### Mechanism:

- Localized current in body of device
- Roughly analogous to second breakdown in power transistors
- Devices with low doping concentrations are most susceptible

#### **SEGR Facts**

Triggered by heavy ions

Always destructive to device

Dependent on angle of incidence

Dependent on electric field in gate oxide

- May also occur with zero electric field
- Interplay between pulsed current in drain region and oxide field

Synergy between TID and SEE

Power MOSFETs most susceptible

Some modern programmable devices are also susceptible

## SEGR/SEB Examples

#### **SEGR**

#### **EEPROM**

During writing/erasingLAMBDA ASIC

#### **Power MOSFET**

 LET threshold of 25 MeVcm²/mg with drain biased at 1/2 rated maximum, and zero voltage on gate

#### <u>SEB</u>

#### CRUX/APEX

 2N6796 had a LET threshold of 15 MeVcm<sup>2</sup>/mg

### Dealing with SEGR and SEB

Test all device types that are potentially susceptible

Derate devices well below maximum rated values

- Possible for discrete power devices
- Not appropriate for SEGR or SEB in integrated circuits

Minimize duty cycle for application of high voltage to susceptible parts

Program high voltage device in low radiation environments

### Summary

#### Latchup

- Temperature dependent
- Epi devices are generally better
- Prevention circuits not necessarily effective
- Best approach is to avoid using latchup-prone devices

#### Gate Rupture and Burnout

- High voltage devices are generally more susceptible
- Derate devices well below maximum operating conditions
- Ensure that all sensitive technologies undergo testing